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Motivation

I Low-cost sensor iFLINK addresses three main research challenges:
T networks
e ft% sartclty services _Aulen * The accuracy of environmental low-cost sensors; i.e.
) = Clean air . . . .
/_ PV | sisarase uban amin how to ensure that sensor data quality is sufficient for
atellte data 3 the anticipated use of the data
satellite dat \ iFLINK data # .Sncl;arttranfpolrtsemces g?ﬁﬁaﬂ . p 4 .
infrastructure [ green route plamner T = * The design of a scalable open data infrastructure that
o .~ e allows the connection of different types of sensors
Urban digita data// smartenvionmental - g% g 3 independent of the data format and location, and
\E‘[&l i ity stations . Personalzed information” ' * Information solutions aiming at engaging people,
= Awareness raising . . .. . .
Yo industries and communities in addressing complex

environmental issues, such as air pollution, climate
change and noise.
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R&D activities
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Selection of sensor systems

. . . . Information about performance
Vaisala Air Quality Transmitter AQT410 . . Meet Flow, your smart is lacking.

- Technical Specifications =~ Documents O — mOb”.e air quauty traCker

T —
Overview T ——— For the past two years, Plume Labs has had one mission: helping you stay
§ ahead of air pollution to improve your environmental health.

Vaisala Air Quality Transmitter AQT410 measures the most common gaseous pollutants nitrogen il " — ” S ———
dioxide (NO2), sulphur dioxide (SO2), carbon monoxide (CO) and ozone (03). The AQT410 ! Tocaymeare ntrediblyproudicgunyeil thed signiof HowbyRlims
measurement performance is based on proprietary advanced algorithms that enable ppb Labs;thefiesmartimobileiqualily tracker:

measurements at an affordable price using electrochemical sensors.

Flow by Plume Labs: Clean Air, Onwards — The smart mobile air... s

AQT410 has been specifically designed for air quality monitoring networks in urban areas, road
networks or around industrial sites and airports. Thanks to its small weight and compact size it is
ideally suited for deployment even in large air quality networks.

ABOUT PRODUCT v PERFORMANCE v SUPPORT v NEWS CONTACT ' \

‘ 7 .Dp]ume
|||||| |||||l AQM eS h -, O@ NILU sk institutt foruitforskning

MNorwegian Institute for Air Research

Arevolution in air quality monitoring

Spesifikasjoner for
il il R sensorsystemer til maling
av luftkvalitet

Anbefalinger ved anskaffelse

Franck R. Dauge, Leif Marsteen, Philipp Schneider

your air quality sensor

Manufacturers should provide
tests from independent
laboratories!!
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Evaluation of sensor system performance

Laboratory Field co-location

Using approved reference measuring methods

Lab: Controlled conditions for temperature, humidity & gas concentrations
Lab Analysis: pre-calibration, repeatability, LOD, temp/RH interference
Field: Real-world conditions,

Field Analysis: calibration, intercomparability, temp/RH interference
Simultaneous evaluation of 3 units
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Calibration of sensor systems

S1 original data
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Calibration against reference instrumentation improves sensor data quality, but, there are many open

Reference PM2.5 [ug/m3]

Sensor PM2.5 [ug/m3]

S1 Temp/RH corr. (MLR)

50
y=225+077x R*=0.75 L
40 :
° [ ] °0
«® L ]
30' [
T o ° ce z
® g‘o. o‘a L
o o offe °e® o °
207 gt
T A
° % o5 o - ° ‘
101 R
7 <
3 .;-‘3,0
P+ Sl
0_ (J
0 10 20 30 40 50

Reference PM2.5 [ug/m3]

Sensor PM2.5 [ug/m3]

S1 Temp/RH corr. (RF)

501

B
o
1

w
o
1

N
o
1

—_
o
1

y=167+0.824x R*=038

0 10 20 30 40
Reference PM2.5 [ug/m3]

guestions: how long does the co-location needs to be?, how often do we need to re-calibrate?
More research is needed in smart calibration techniques.

50




From sensor units to sensor networks

5 DA T . The selection of locations will
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Automated/QA/QC

([ N .
SN In dense sensor networks, automated quality control

24 (detection of drift, malfunctions, outliers) is crucial.
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Use of sensor networks for air quality mapping

Red markers:
Locations of
Air Quality
Monitoring
stations for
NO,

Blue markers:
Deployment
sites of low-
cost sensors

Y

An example of a previous sensor network deployed in the city of
NILU Oslo, Norway. 65 sensor nodes (mostly for NO2)



Combination with model output

Combining observations with model
output through data fusion or data
assimilation adds value to both input
data sets:

* Model is constrained by actual
observations

* Observations are interpolated in
space in a physically meaningful way

10.6°E 10:2€ 10.8°E 10.9°E

Y

NILU Annual average concentration of NO, for Oslo as
computed by the EPISODE urban air quality model.



Previously: Geostatistical data fusion

— Official AQ monitoring stations

/o —— Data fusion based on AQMesh units
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Schneider, P., Castell, N., Vogt, M., Dauge, F. R., Lahoz, W. A., & Bartonova, A. (2017). Mapping urban air quality in near real-time using
observations from low-cost sensors and model information. Environment international, 106, 234-247.

Y

Schneider, P., Castell, N., Dauge, F. R., Vogt, M., Lahoz, W. A., & Bartonova, A. (2018). A Network of Low-Cost Air Quality Sensors and Its Use for
N | LU Mapping Urban Air Quality. In Mobile Information Systems Leveraging Volunteered Geographic Information for Earth Observation (pp. 93-110).
Springer, Cham.



Incorporating sensor uncertainty
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Urban-scale data assimilation of low-cost sensors in Norway

Model output at 25 m spatial resolution (“a priori") and hypothetical observations of NO, [in units of ug/m?3] from

AQM stations and a low-cost sensor network of variable accuracy. The size of the marker indicates the accuracy of
each observation (inverse of uncertainty).

NILU



Citizen engagement in mounting low-cost sensor systems
to monitor indoor and outdoor PM2.5.
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A short public service
announcement...

New paper introducing
standardized processing levels for
low-cost sensors

Schneider, P., A. Bartonova, N. Castell, F. R.
Dauge, M. Gerboles, G. S. W. Hagler, C. Hlglin, R.
L. Jones, S. Khan, A. C. Lewis, B. Mijling, M. Miiller,
M. Penza, L. Spinelle, B. Stacey, M. Vogt, J.
Wesseling, R. W. Williams (2019). Toward a
Unified Terminology of Processing Levels for
Low-Cost Air-Quality Sensors. Environmental
Science & Technology, 2019, 53, 15, 8485-8487.

tence & lechnology
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air temperature or relative humidity (e.g, Spinelle et al.*), and
occasionally data not actually measured by the sensor system
itself (e, station observations or model output). Most of
these techniques improve the level of agreement between
sensor-derived data and reference data, in many cases
eliminating issues such as chemical interferences and sensor-
to-sensor variability. It is not always clear, however, the extent
to which the data arising from such processing are still a true
and independent measurement by the sensor system, or some
blend of secondary data and model prediction. Noticing this
development, Hagler et al. (2018)" warned that some systems
may use predictor variables for calibration in such a way that a
line is crossed from justifiable and empirical correction of a
known artifact to a method that is essentially a predictive
statistical model. In addition, the processing steps that are
carried out along the way are often not clearly communicated.
The current lack of governmental or third-party standards for
low-cost sensor performance” and occasional lack of
distinction between sensors and sensor systems further
complicates data processing,

Adding to the observations and recommendations made by
Hagler et al. (2018)°, we have further noticed that there is
substantial and consistent confusion within both the scientific
« ity and the i 1 public regarding the amount
and type of processing applied to sensor data, and at what
point derived data can be considered to have lost a meaningful

ow-cost sensor systems for measuring air quality have
received widespread scientific and media attention over
recent years. It has become an established technical method-
ology to improve the data quality of such sensor systems by
colocating them at traditional air quality monitoring stations

equipped with reference instrumentation and field-calibrating link to quantitative traceability. The relevance of this issue to
individual units using various statistical techniques. Methods
range from (multiJlinear regression to more complex statistical Received: July 3, 2009
techniques, often using additional predictor variables such as Published: July 29, 2019

© 2019 American Ch | Saci B4E5 DO 10.1021/acs.e5t SH03950
v ACS pugllcatlgns merean Shemes = Environ. Sci T!!hrn:lﬂl!.a:;. I:;BS Bagy




Level m Definition Example: Gas-sensors Example: Particle-sensors

Voltage corresponding to measured quantity, Voltage corresponding to current due
Raw Original measurand produced by sensor  such as current for electrochemical and infrared  to light scattered in nephelometers,
measurements system sensors, resistance/ conductance for metal- or to binned counts for optical
oxide sensors particle-counters
Estimate derived from corresponding For electrochemical sensors, NO, concentration . . .
. ) ; - . 3 . Binned particle-counts or PM mass in
Intermediate Level-0 data, using basic physical in ug/m?3 or ppb, using only Level-0 data from 3 Ao
. o A . . ; . . ug/m3 derived from Level-0 data
geophysical principles or simple calibration the NO, sensor itself with no additional . . .
. - . : . . using simple calibration/assumed
quantities equations, and no compensation corrections beyond factory calibration ("raw ) .
. . o particle-density
schemes. data in concentration units")

Estimate using sensor plus other on-

. 3 .
Standard board sensors demonstrated as G, Geln L G [ oy 0 ot piela, elerlied

L .
from onboard NO,/NO/O; sensors, corrected for PM concentration in ug/m?, corrected

Level-2A geoph.y.smal approprlate for artifact correction and e for T/RH effects with onboard-

quantities directly related to measurement data measured T/RH

principle (Hagler et al., 2018)
Standard As Level-2A but using extgrnal data . As Level-2A but using external data from nearby
. demonstrated as appropriate for artifact . . . .

geophysical . . station related to correcting for interferences As Level-2A but using external T/RH
Level-2B o correction and directly related to - .

quantities- based on the measurement principle (e.g. 03, from nearby station

measurement principle (Hagler et al.,

extended 2018)

T/RH)

Measurement/prediction boundary

Estimate using sensor plus

. . . L . PM concentration in in pg/m?3,
internal/external inputs, not constrained NO, concentration in pg/m? or ppb, derived ue/

Advanced derived from Level-2A or Level-2B
. to data proven as causes of from Level-2A or Level-2B data, further .
geophysical . . data, further corrected by proxies
o measurement bias or related to corrected by proxies known to be correlated .
quantities . . . known to be correlated with PM, e.g.
measurement principle (Hagler et al., with NO,, e.g. emissions or modeled NO, .
emissions or modeled PM
2018)
SELENY Map of NO, concentrations in pg/m3 or ppb, e.g. Map of PM, : concentrations in
continuous Spatially continuous maps derived from e ; - g 25 L
. by assimilation of network data into a physical ug/m3, e.g. by assimilation of network
geophysical network of sensor systems . .
model data into a physical model

quantities

Schneider, P., A. Bartonova, N. Castell, F. R. Dauge, M. Gerboles, G. S. W. Hagler, C. Hiiglin, R. L. Jones, S. Khan, A. C. Lewis, B. Mijling, M. Miiller, M. Penza, L. Spinelle, B. Stacey, M. Vogt,
J. Wesseling, R. W. Williams (2019). Toward a Unified Terminology of Processing Levels for Low-Cost Air-Quality Sensors. Environmental Science & Technology, 2019, 53, 15, 8485-8487.
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Conclusions

* The accuracy of low-cost sensors is improving, increasing their potential for
data assimilation

* In particular some sensors for PM, ; consistently reach R? values of 0.7
(hourly) to 0.9 (24h) against reference-equivalent instruments

* Assimilating data from a dense sensor network into urban-scale models can
add value to both datasets and improve real-time urban-scale AQ mapping

 The NILU urban AQ data assimilation system is model-independent, and sets
particular emphasis on integrating the uncertainty for each individual sensor
system

* |tis possible to involve citizens and schools in monitoring air quality, increasing
scientific knowledge and environmental awareness.

 Important to define a “common language” to describe data processing levels
from sensor systems.
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